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I. INTRODUCTION

The study of reactor kinetics has been growing over the past few
years as swiftly as the new ideas in reactor concepts. Safety is
equally as important a factor as power cost in the future development
of feasible resctor power. Advanced resctor proposals must be analysed
kinetically to understand the limits to the stability of the reactor.

A useful device in amalysing a reactor system for its kinetic be-
havior is the so-called transfer function. The transfer function can
be defined as the vector that represents the ratio of the output to the
input of a system. This means that the transfer function specifies not
only the magnitude of this ratlio but also the phase relations between
output and input. In existing reactors this phase and amplitude re-
sponse is usually and conveniently measured by means of a sinusoidal
input function. In electrical systems it might be a sinusoidal woltage
impression while in chemical systems it may be sinusoidal variation in
reactant concentration. Reactor systems may be conveniently investigated
with sinusoidal variation in reactivity., The mathematical grounds for
the determination of this frequency response is that if the phase and
amplitude relations of a system are known for all input frequencies from
gero to infinity or for practical purposes over all relevant ranges of
frequencies then the response may be predicted for any type of input
sinusoidal or transient. The transfer function is the manifestation of
the frequency response: it is what can be used to predict the system
response to any type of input.

The reactor transfer function of interest for the present is the



open loop transfer function. This means that there are no feedback
effects (temperature changes in the fuel or moderator, control system
rod adjustment, etc.) to affect the nmatural response of the reactor to
the input. 3Servomechanism analysis can then be applied considering
feedback systems to detemine the overall behavior of the reactor system
mdurwmutimmaﬁ:ﬁm.

The transfer function is arrived at through the time dependent
differential equation that describes the change in the variable that is
affected by the changing input in terms of that input, In other words
for a reactor system a differential equation that shows the change in
neutron population as a function of reactivity 1s desired. This latter
is the reactor kinetic equation.

A+ Development of Reactor Kinetic Equations and Transfer
Funetion for Homogeneous Hare Core

In the formulation of the kinetic equations it is necessary to
first develop a differential equation for the rate of change of neutron
population with time, which naturally follows from a neutron balance.
The method used is that of J, F. Hill (9). However, a change in nomen-
clature has been made so that consistency is maintained within this
work. feference to the nomenclature, Chapter XI, may be necessary where
the parameters are not defined in the text, The inputs to the system
are from two sources namely, prompt and delayed neutrons. Denote a
mean thermal prompt neutron lifetime by

RS

VZ‘
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where v is a mean neutron velocity for themmal neutrons and Z‘uuu
absorption cross-section for only thermal neutrons. The mte of pro-
duction of prompt thermal neutrons is

X z‘ m(l-/e)

2. 8).

Lo
The production rate of delayed neutrons is Moifwmithmor
6

?%qtaraum. The total production is the sum of the de-

layed and prompt production.
Heutrons are lost by capture or escape from the reactor. The rate

afupmunvi"arn/faﬁulcu
- 4P nm&tr?.mmmm%?r
then the rate of leakage or escape is n X/(, and the total losses
are n(1+ £)/L,.
The change of neutron population with time is the difference be-
tween production and loss, namely

6
dn ,
- fu-/ﬁ) 4; Al = é‘-o 1+ X) (1)
which gives on rearrangement
5
dn
nx" i}o [;(1-/6) - (1 4&)] 4 %)\101 . (1a)

Define k= kyep =1 and kgee = k/(1+ L) which on combination,

v e,

Kers
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yield (1 + &) = k(1=$k). Substitution in Bquation la gives

4

dn _nk |(1=B) = (1 =8K) « p
« Qo[ A J 52

or

6
%,%(Su-y& . leia{.

L was defined for an infinite reactor so let {* be defined as the
mean prompt meutron lifetime for a finite reactor. In doing sof should
logically be reduced by the factor kepg/ke Hence, {* = Cokere/k

The final form of the kinetic equation is

g -E‘k‘fg(gk-ﬁ)*i}\iﬂ. (2)
A balance for the delayed neutrons from each of the i groups may simply
be written as follows:

S5t -
-k A1y (3

where the firet term on the right side of the equation 1s the production
of the ith delayed neutron emmitter and the second term is the decay of
this emitter.

The kinetic equations, (2 and 3), have now been established for a
homogeneous bare reactor. The next step is to develop a transfer
funetion for such a reactor and see how it would respond to a sinusoidal
input of reactivity ( §k). The response of the reactor is manifested by
the variation in the neutron population. In this analysis the method of
Shults (12) is applied. In order to simplify the approach the equations
are first lineariged, that is let



nun°+8n and
Gy = 0q9 + 5&1.

In doing this the values of n and Gy are allowed to vary only
slightly from the steady state walue of n, and U3, respectively. The
product of the two factors as it appears in Equation 2 would normally
yield the nonwlinear product n(t) ¢ k(t) which cannot be handled easily
since both are funotions of time, With the specification that both &n
and §k are small their product may be neglected. The substitutions will
be made after some slight rearrangement of the equations.

Bouation 2 may be written

6
@ - e Sk‘f‘%ﬂ/@";hﬁ

in which the last two terms are replaceable by
6

6
- %. -usz’ﬁ-&;’/\,_ci
from Equation 3. This yields
g . s o W

1

The kegy must be eliminated from the equation since it also varies
with changing dk. This is accomplished by assusing that the reactor is
originally in the just critical condition when the change Jk is
introduced and that since Sk is small the value of kepe doss not change
significantly from 1. ZEquation L may be rewritten as




©
dn é - dO - (h‘)
@& - Q* aii

1
The substitution of n = ny 4 Sn and Gy = Cio + JCy can now be
effected.

. &
d(ng + n) = ~é£(no +4n) - Z!(Gio-t 301) .

at &g dt
1
The derivatives of the constant terms (steady-state) are sero, hence
2 o
d én = éﬁ - ngci . (5)
dt e dt

T
The product Jk 9n/Q* has been omitted as negligible compared to the
other terms. OSubstitution of these variables in the second kinetic

equation (Bquation 3) yields

dSCiu S B 10 - 1860
= éﬂi}no d ﬁiﬁ'“ 1i¥i0 1063

But when the steady-state condition of this equation is considered, that
is

Bide - Aifip = o,
iy .
the equation becomes finally

The usual method of handling these equations involves the use of
the Laplace transformation. Taking the Laplace of Squation 5 and 6
vields

aén (s) »dgn(o) = noék(a) ZSG:{(I) dé (0)
“av



and

aSci(-) - 6501(0) a3 ﬁg., §n(l) Al Sci(-) .
dat A

If it is assumed that all variables have attained a steady state previous
to the input Sk(s) then the derivatives at ¢ = O are all gero and may

be dropped leaving

o Salo) n, Sk(s) Z Sey(s) (n
and "
s dci(s) = ;%‘S“(') = Agdey(s) é (8)

From Equation 8

Sos(s) = éﬁi éu(u) q
s+ Ay

Substitution of this value in Eqmticn 7 yields on transposition

Sn(-)[{l-r '*1‘9” nogk(l)

and finally the transfer tmwtion defined as output divided by input is

Sne) . m 1 s
dk(s) ¢ [;[~1+Z§1.¢ 1]]

It should be stressed at this point that this transfer function

(9)

has been derived for a bare homogeneous reactor in the just eritical

state. The input Sk can be of any form but it must be very small com-
pared to one and the flux distribution should not be distrubed greatly
from that to which the wave equation applies. This not only limits the
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magnitude of Jk, but alse its spatial distribution.

B, Development of Kinetic Equations for a Two Core Reactor System

The UTR-10, far from being a bare homogeneous reactor, is not only
laumgoumméntlwhébutmommm:mnuwmmh
are mildly coupled to one another. Coupling means that neutrons which
escape from one core and travel through the internal graphite reflector
can eventually find their way into the second core. It has been found
that such a system, while it does exhibit a single stable period for
the reactor as a whole, when it deviates from oriticality will not
necessarily show a single transfer function such as derived in the previ-
ous section (3)s The reason for this is that the power levels in the two
cores may be different. This phenomenon is termed flux tilting. If the
degree of this imbalance is known then it is possible to obtain a trans-
fer functions, one for each core, for each type of input that is possible.
In the case of a two-core reactor the excess reactivity of each core as
well as the coupling between them may be subject to oseillation which
would yield six separate transfer functions. The system can be reduced
to a single transfer function only if the flux level is equal in the two
cores. This is easily seen from the transfer function when it is de-
veloped for a two-core system. The type of input which will be developed
and experimentally applied is the sinusoidal variation of the coupling
coefficient only, The method of development of the kinetic equations is
gimilar to that of Baldwin (3).

The time dependent diffusion approximation may be applied to each
core separately which gives in core 1



?

D]_Vz 4)1(&‘3) » 2;14)1(;',%) 4 3‘.("%) = 1/" .a_&Ql(.zﬁz (10)
t

while a similar equation holds for the second core.

The source term can be considered to be composed of three contri-
butions; prompt neutrons that are moderated within the core itself,
delayed neutrons that are moderated within the core, and that component
which originates in the other slab., The cores are assumed to be identi-
eal in all ways except that the flux levels may be different.

The prompt thermal source for each core is a result of the slowing
mamtmmmtwmm:mm(sp). In core one
this would be

Sp = (1 -/S)hl 2al il Cbl(ht).
The delayed source (Sq) depends on the decay constants of each group and
the concentration of each delayed neutron precursor. To consider only
thermal neutrons this has to be multiplied by factors to correct for
leakage and resonance absorption.

S8g=pm lei Xi0q1(myt) o

The final source term (3;5) coming from the second core is delayed
by time 7 in crossing the internal reflector. It is assumed pro-
portional to the average flux in the other core hence

sa= §Ppt-T) .
The total thermal neutron source in the core 1 is the sum of these three

terns

Sltﬂpilﬁd*alz'
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Substituting this source term in Equation 10, the diffusien
equation, ylelds

092 Oyint) = Ty Pr(nt) + =By T g L2 Pyes)

+P, £1 Z_Aici(r.t) 4 €1®2(1‘p7) =1 ad)l(r,t) « (11)
v St

The derivation of the kinetic equations and transfer function will be
demonstrated only for core one.
The precursor equation, 3, naturally holds for each core.
_%%_12:}.)_ == NiCi(r.t) + %ﬁi 2al (bl(r,t). (12)
The assumption is made that the wave equation holds in each core
which implies the separability of the variables r and t. Thus
- P Qy(n) = y2dy(r,t). Make this substitution in kquation 11,
divide by Y, and set /5, =13, the square of the thermal dif-
fusion length. The following equation is obtained:

¢1(r,t)[~ (13 53 + 1) + (1 - T ﬂ 4 x,cu(r, ]

@1(1‘1

. & a-)z(t,-’i') 1 a(bl(r.t) :
2m1 vznl ot
@1(1'9‘) cﬂl(rot) vs 1,,1/ VZ.]_()"’LE %); k:’tf k £1

(].41.1_E

(13)




n

and sot Xy = 6;/2,;(1*@#); The agsumption that d)amha
represented as an average flux in the source term is valid for emall
highly reflected cores such as in the UTR-10 reactor. Hquation 13 bee

6
nlzl"'t)" K" (1 "'ﬁ)am L %%Z%@n(’;ﬁ‘)]
1 "

¢ Xnp(te T v = 4° 2mims) | ()
ot

From the precursor equations substitute for \404(ryt) in
Boquation i, that is fyom Bquation 12

6 6 6
A’.Q,‘(ryt) L ﬁ él z.)."nl(!’") - 86,_(:',?-)

0%
1

or with the substitutions above thls exprossion becomes
5 6 6
D fn uZ 581 min®) ~Zag;(m>» (28)
1 y AR - Ot

This gives upon substitution in Zqmation 1

: 6
nl(r,t.)v [‘0 14 (}_../8 )klm 4+ klwz@i .
 §

]
i g Z?_ﬁ;_(!’otﬂ + °(1ug(fn’i')v L ,gl’l'a_&(r’tji (25)
lﬁ“i‘:’ ot ot
|
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Iithf/eic/(ﬂ and 1% - 1 = 19 Equation 16 becomes

a™m® _pn L, Z‘agnm o sam(eT) o om(w
A1 Ot 1 ot

The functional dependence of n on position has been dropped in accordance
with the separablility of the variables previously implied.

The precursor equation is from Bquation 15,

et _ ln(® , 9By m(v), (28)
ot Bdy 4y

Equation 17 and 18 are the kinetic equations which will now be used to
derive the two-core transfer function by the method of Laplace trans-
formations. Similar equations apply to core 2. Again, however, the
equations will only be derived for the one core.
Assume an input of the form

XX = Oy & §X o
The form of the output variables will be

m o= m + Sm

Cjp = 0p° Scn,
Substituting these in the kinetic equations the following is obtained:

0"’ gme) L, Z’aSoum ot (=)
4, Ql

1

Sn (t=T)  Sxn@(t=T) xS0, (=T
5 5’ . O o AR [, T
1 2y 2, ot
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The term %« S a(t-T) may be neglected and from the steady-state
1

condition, ¥1¥Mm° ., (gM® = 0, the Equation 19 reduces to
2y ‘2

v , 6 :
"m0 p £y Z 280y (V) | g §mplt-T)
b Dt 41

(20)

o X =T)  Bm(t)
£y ot
Substitute the output variables as defined above in the precursor
equation (18) and as in the case of the diffusion equation the steady
state condition can be dropped, that is

eff..0
Y 5__317& - o.
nt, l,

The resulting equation is

aden® _ _ A Seg(v) 8, Sm(v) ‘ (21)
dt P tf,). £y

Take the Laplace transform of the two equations (20 and 21).

6
_1_‘_1_“ 5:11(3) : PIXIZ 80y, (s) p Ao Sng(.).""r
1 Z

£ 1
. §°((t)n2° <
—— g = s Smy(e). (22)
i
s Soy(0) o . Aop® , T By Sms) | (23)

Plfl 'Ql
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Solve for § Cq1(8) in Bquation 23.

- a8y Sme)
8911(.) PTZY%_]T‘%U

mumumotmmmmam

”n*™ Sm(e) o E g1 8dm(s) | olaSng(!)O
Z B4 11)

d (8) - 5::1(:) .
4

Rearranging these equatlons to see the coefficients of Smy and Snp
mmums-rm:

[:1"‘ '“ﬁx . ]551(') oo & {na(s)
li» 1

2y

c) »
. (24)
11

In the critical system with A at its medlan value g kinetic
Squation 17 ylelds
M= n® + ot =0
Hence it is seen that R defined as m%/ny® 1s also equal to - /i *%,
Substitution of R = m%/m® o = = Rig™ and 15 =1 4 K¥* dato
Iquation 2k gives

6
- % Q1 -5%/MR é;l _s Sq(s) N g{gc“réng(a)
G . : Z "+ ] 4y

2

- X(e)ng®
£y
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Wiltiply this equation by = flR/ X (8)m°,
6
E‘owa-%)z b -a%] Sme)
_ 7 (s + Ay) , 3°((t)01°

aall (ng(e) 2
3¢ (8)ny°

Through a similar manipulation of the diffusion equation for the
second core, the equation in terms of the transfer function variables is

6
o7 Sm (s) i EXQ *(1/3 %) SBis
o %0((.) nl° | (s + Ai)
+ s &y égg (s) o1
0 $X(8)ny° '

These simultaneous equations in the transfer funetion variables for

the two cores, that is 0m(8) and 9mp(8) , can be solved by de-
Se(e)n®  $o¢(s)n,®

terminants or simply algebraically. The results are as follows:

c(;\],(l)

;C((')nlo

o + (R =) 6'é1’ s _'__@2’ 3 «o‘.‘r
‘Zl‘ (s 4'11) R

\:f-p (1/R= )\ B8 A :,_Q_% Efo +(R~°(°)/31l 5 'gla -«:om
,_/j/ %a +%) R 1o+ 2y
+ gy




and

6
E{o . (R= Wo)j 18 aﬁﬁ]
E&+ (1/R= o(o)> 1- uﬂ}E(o L (R—o(o):gil lﬂ,ﬂ_%. i

Anummmtmtmtummmmimtmwmr
R = 1, that is when the flux levels in the two cores are equal.
In this study an attempt was made to determine the value of the mean

prompt thermal neutron lifetime, AL . It was known that if the two core
response was gimilar to single core response the value may be arrived at
through the break frequency which occurs at /3/1, +A  (see Equation 9)

g a
or approximately /S/L- To see this let _ﬁ.}\_{)

Bquation 9 reduce to .ﬁs____i__)_whon A represents the averaged decay
g+

constant of all six groups. The transfer function then reduced to

n(s) _ Mo s+ ‘}

AL ¥ n(a-&é_-&))
The break frequency of interest is in the denominator. Neglection of )
and assumption of B would yield the desired value of Z once the experi-
mental break frequency were known. lowever, it was thought necessary to
investigate and analyze the two-core transfer function derived above to
see if it did correspond to the single core function. The method and
results of this research are presented in the following chapter.
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II. ANALYSIS OF TWO CORE TRANSFER FUNCTION

Tt is not readily obvious what the two-core transfer function is
like and whether or not it is comparable to the single core transfer
function previously derived., In order to place it in a form where the
two may be compared first assume a single group of delayed neutrons with
average properties of all six groups. The transfer function for the
first core reduces to

T.Fol =

E‘t)-& (W-Q)A_*‘_Aj .-CT'
E‘O + (1/3*0@) @_:.1 + %&][0(0 4 (R-%)é_; 3 .Aﬁ. %2 ...Q"T'

This expression may be most easily reduced to analysable foram by
setting R = 1 and letting {3 . 2=/, The factors of the right side of
the denominator are then identical and the function becomes

ToFil = i;’o(l i ."i*—) + (1 - D( ) ‘E & ‘éj-
8+ x ~

The factor 1 = =7 may be approximated by &7 and the function is

T-Folﬂ .41
uﬂ.[c#(lw“) l:l
l (a’l’/,e,+1)
Physically in the UTR-10 this equation is approximately the same

as the simple single core transfer function. T  and L are the same order
of magnitude and o, <C1l. This function when plotted on a Bode
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amplitude diagram which is standard procedure in transfer function analy-
sis has the following characteristics:

Tl *
band A—/ ' \1f°‘o~ 75 *)‘N

14+ oleq

log o —

In this and subsequent diagrams in the discussion the amplitude curve is
approximated by its asymptotes.

The comer frequencies of this curve ocour at ) and7€.+)k or
more precisely for the two core function with R = 1 at Aand at

Q- dp)
1+ 0(97)% ¢ As
As was mentioned previously, for the two core system, the flux

levels in the slabs need not and probably will not be the same. For
this reason the transfer function as a function of R as well as the

other parameters are subject to investigation. The assumption

Ry = £5=7Z isst11l naintained. In order to obtain the essential
information such as break frequency without resorting to the use of
numerical values for the parameters, it was found useful to investigate
the high and low frequency response separately. Of course it is
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necessary to know the approximate magnitudes of these quantities before
it can be said which terms may be neglected. For this purpose the values

used by Danofsky (5) were adapted.
Congsider first very low frequencies. The transfer function for the

first core becoues

ToFey = E‘o + /& - do),'é;!i_ + da]

[ * (I/R" “g) O,. ]Eo .;(n" O(ﬂ) ] _..d@z.
s ¢ AL 84+ A

Here the terms :V)Q/Rmd.ﬁnhanhmughokdmdtmum
e5T and ¢257 have been set equal to unity. In all these cases the
Laplacian operator, s, has been assigned the value of the frequency. A
further simplification that may be made is that of neglecting o,

with respect to both R and 1/R. This is not necessary in the analysis
but was simply done for convenience. If it is desired, in the result,
R and 1/R may be replaced by (R = o) and (1/R = O(;) respectively.
With the expansion of the terms in the denominator and placement of all
terms over the common denominator (s + X) the transfer function becomes

ToFey ERO(“+/Q).+IRD(°)?J 8+ )\)
o [doSmens B todss A% B/ s 1)

This may be placed in a form where the break frequencies are repre-
sented by the constant terme in each factor as does )\ in (s + A\). Thus




E+ 2n Ko A (84 2)
ﬂ‘xg"ﬁ) ‘

s [34 (R+ 1/8) A :)
(R + 1/R4/%)
The gain factor has been disregarded.
The magnitudes suggested by Danofsky (5) for the parameters were'
/3 = 0,0068
| A= 0,08 disintegrations/sec.
Te 2.1 x 207 sec.
L= 1.35:104‘ sec.
oy = 0,0155

R'l‘z «
The use of these values in the above transfer function ylelds

T.F.., = {8+ 0.068)(s + 0.08) ,
+ '(. o+ 00%6) :

To’ol =

This will appear as follows on a Bode amplitude plot which shows
the asymptotic transfer function:

*The value of T was calculated by Danofeky. A was simply a
weighted average decay constant for the six groups of delayed neutrons.
R was assumed applicable to UTH-10 oparation by Danofsky. The value of
2 was given by the American Standard Company (1h) while ¢, was esti-
mated by Ray F. Crews, Manager of Applications L uclear,
American Standard Company, Mountain View, California, Information cone-

mm—mm,mmamum.ww./emme
given by Keppin and Wimett (10a).



log w~=

This transfer function is valid for the low frequencies suggested
by the values obtained for the break frequencies and lower as well as
up to the order of magnitude of one radian per second. It can be seen
that the break at 0.08 or A still occurs as in the single core function
but there is a short interval preceding this where the slope changes to
~12 db/octave and then quickly shifts back to -6 db/octave.

Consider the transfer function at high frequencies above 10 radians
per second, In this case the term s/(s + A ) may be considered as unity
whereupon the transfer function is

TFoy =

e vSARL) « We )

[ A2t

s HBR . ol LB, 02, ceps 23R8, (s , P62 op2A=T)
R R

In this case ¢®7 was approximated by l-s7 and similarly e™2°1 by
1 «287 + The terms in the denominator can be combined into a quadratic
term and the function becomes
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T.F. =

[% ,@] [I, oao’ij
Lo(o/ﬂ Ny 3%&]4. [%Qn* 28L, a0 . z%zﬂ o, 242

R
The standard form of the quadratic factor in transfer function nota-

tion is
2

1+2 f 8+ 8
w u)2

go that the function should be written as follows:

. 2
o gv 04
T.F.I“%~ AR

cY/S %
1+ 0 .2
V ‘ﬁ / oﬂb Noﬂb
k.2 2‘2

where a = 3+L&+2/&NK°+2<&{V/L
and b = R+1/R4-/@/c>(‘°

§il then = o(wga,
%/“oﬁb
andw= oo Ob
Whether or not this factor remains as a quadratic or can be factored
into two linear functions depends on the value of §. If 3 is greater
than or equal to unity then the function can and must be factored; if

less than unity then it remains a quadratic and can be treated as such.
If the magnitude of the parameters as stated previously are used then
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the value of fh 1.46, however, it can be shown that independent of
the values of the parameters f’ml;WUbOgrnmthmono. This
means that the denominator must be reduced to two linear components.

The roots of the quadratic represented by

w2+2¥ws +#£ = 0 are

o= w[S2y/SE-1)
The use of these roote in the transfer function gives, again disregard-
ing the gain factor

TtFtl =
-;o(o-té_‘&a
£
00 St v%“w%,ﬁhnﬂ aap = /G5 -h%/ﬁb]
2 L 24

If the values recommended by Danofsky (5) are used the transfer function

becomes

T.F.l = (3217 + 8) N
(288 + 8) (468 + 8)

This transfer function will appear as follows on the Bode amplitude
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The complete transfer function for the two core system will be the
combination of the low frequengy response derived previously and the
high frequency response above.

The subject of this study will be mainly the break that occurs at
a frequency of approximately L6.0 radians per second as given by
Danofsky's values. The remainder of this discussion will center on the
properties of this break frequency and the parameters that determine it.

The transfer function for the high frequencies may be further re-
duced if we neglect the last temm of the defined value of a, that is
20,7 /0. Thenb=a+/ /Xy The transfer function reduces to;

Ty = |2 0 ~r/g,__T
ko c('o’\'J

R
Eu;é_][c* g"n!v&é]
y £
Ituzmmmtmumnmox/@/f, that a break should
occur in the transfer function. This break and the one at A are the

+ 8

ones that correspond the single core transfer function. If it is as-
suned that /3 is known for the reactor then £ may be determined once
the experimental value of the break frequency is known. This is,
however, an approximate analysis of the approximated high frequency re-
sponse. In arriving at this transfer function A was first neglected
with respect to the frequency of oscillation. Further the tern

o, T /L was neglected with respect to /3/ < ,. This 1s a valid
assumption if ©(, is not much larger than that assumed by Danofsky (5),
that is, 0.0155. The above transfer function can be applied with
reasonable accuracy to the UTR-10 reactor with the degree of coupling
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that exists. The break frequency that is obtained using the above ap-
proximation is 48.1 radians per second while the more precise first
approximation gave a break frequency of 46.8 radians per second. There
is a difference then of only 2.7f between the two approximations. It
is also estimated that the neglect of A in the original high frequency
analysis will yield a Q2% error at this frequency. This first approxi-
mation is then by far more accurate than the second. Of course the
error will grow larger as o, increases. Figure 1 shows the variation
of the break frequency as o, is varied maintaining all other parameters
constant. It also compares this variation with the limiting frequency,
as ol, approaches 0, of /3/,0;.

As can be seen from the graph the break frequency decreases rather
slowly as o(, increases and the error introduced by neglecting o<, is
not more than 5% for o(, less than .030 which is probably a valid as-
sumption in the UTR-10., However so this may be valid the break frequency
obtained experimentally was used to find the limiting value of £ from
the ﬁ/}b approximation as well as £ as a function of Xge. To
accomplish this the values of 5 , 7 and R had to be assumed and through-
out the values given by Danofsky (5) were utilised.
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III. REVIEW OF THE LITERATURE

The study of the kinetics of reactor systems was done on a theo-
retical basis with the first work on the Manhattan Project. Since then
many have solved and resolved the kinetic equations using a variety of
techniques for their different aims in applications (1, 6, 7, 9, 11, 12,
13)« The foremost application is toward the better understanding of
the reactor as a unit in a control system. Information along these
lines is obtained through the transfer function. The reactor response
to various reactivity changes will disclose the transfer function. This
may be a step or ramp input, but as mentioned previously easiest to
analyze is the sinusoidal input and response. This section discusses
the various attempts at this latter technique along both theoretical and
experimental lines.

Lundholm et al (10b) have investigated the SRE transfer function
using frequency response techniques. They utilized both random noise
analysis and reactor oscillation. The results of these two studies were
each consistent with theory within experimental accuracy. The transfer
function as derived for a single homogeneous core fit the experimental
results obtained with respect to both phase relation and amplitude.

Much earlier work than this had been done to describe the transfer
function of the CP-2 by Harrer et al (8). He used a cadmium osecillator
located at the center of the CP-2, The results again agreed with the
calculated simple transfer function. All of the data were taken above
0.2 radians per second oscillation frequency. |

Similar work was done on KEWB by R. N. Cordy (L) using rows of
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cadniun shades (rotor) and spots (stator) as the oscillation device.
The nuber of rows determined the reactivity input amplitude. lis re-
sults agreed well with the transfer function as derived for a water
boiler reactors This transfer function as opposed to the mero power
transfer function previously derived in the introduction takes into ac-
count temperature and void effects. 'is data correspond to his derived
transfer function but it is interesting %o note that his results show a
seventh group of delayed neutrons which he concludes arises from the
delaying effect of the reflector in returning neutrons to the core.

Coupled reactors in general are considered by Avery (2). He con-
siders the interaction of a aystem of cores each supplying neutrons to
all the other cores. lie then applies this theory to two coupled re-
actors. Perturbation theory 1o used to obtain reactivity as a function
of a perturbed value of ) which he defines through the importance
function. He develops the inhour equation for a two core system.

Paldwin (3), as is shown in the introduction, uses two core kinetie
equations to develop a transfer function which oonsiders only sinusoidal
variation of oy the coupling between cores, holding ¥** for cach core
at a constant value. This input is sccomplished by placing a varying
abgorber in the center of the internal reflector. His derivation shows
that if the flux level in the two cores differ then the transfer function
for each core will be different.

Panofsky (5) used an analog ciroult of the two core aystem repre-
sentod by the UTR-10 reactor. After performing a variety of inputs on
the electrical analog of this system he concluded that the response of
the UTR-10 to a simusolda) variation of the coupling with or without flux
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tilting would not be significantly different than the response of a
single region reactor under the same conditions of reactivity variation.
During normal operation this flux tilting may vary from 1.05 to 1.18
which did not result in significant effects on the transfer function to
make it very different from the single region reactor transfer function.
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IV. THE EXPERIMENT

A. Equipment

Photographs of the three major components appear in Figures 2, 3
and i, These are the oscillator units, the drive mechanism and the
electronic equipment. Diagrams of the osclllator and pattern can be
found in Figure 5.

The rotor with its half cylindrical pattern when rotated against the
sinusoidal cadmium pattern of the stator gave an approximate sinusoidal
reactivity variation. The actual variation is shown under results as
Figure 6, The amplitude of variation was 0.0041. This arrangement gave
one cycle per revolution so that at the maximum speed obtainable which
was 1500 repems the oscillation frequency was 157 radians per second.
This was well above the estimated 45.8 radians per second for the break
frequency corresponding approximately to /3/4 . The lowest frequency
practically obtainable was .32 radians per second which corresponded to
a speed of 3.1 r.p.m. which did not yield the transfer function in the
range of the break at 0,08 ra<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>